- 1. Consider the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$. If hydrogen gas is added to this system at equilibrium, will the reaction shift towards *reactants* or *products*?
- 2. Consider the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$. If nitrogen is added to the system at equilibrium, what will happen to the ammonia concentration?

- 3. Consider the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$. The production of ammonia is an exothermic reaction. Will heating the equilibrium system *increase* or *decrease* the amount of ammonia produced?
- 4. Consider the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$. If we use a catalyst, which way will the reaction shift?
- 5. Given the following data for the reaction: $A(g) + 2B(s) \rightleftharpoons AB_2(g)$

Temperature (K)	Kc
300	1.5×10^4
600	55
900	3.4 x 10 ⁻³

Is the reaction *endothermic* or *exothermic*?

6. Consider the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$. $K_c = 8.1 \times 10^{-3}$ at 900 K. What is the value of K_c for $NH_3(g) \rightleftharpoons \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$

7. 5.00 mol of ammonia are introduced into a 5.00 L reactor vessel in which it partially dissociates at high temperatures.

 $2NH_3(g) \rightleftharpoons 3H_2(g) + N_2(g)$ At equilibrium at a particular temperature, 1.00 mole of ammonia remains. Calculate

K_c for the reaction.

8. Consider the following equilibrium,

 $4NH_3(g) + 3O_2(g) \rightleftharpoons 2N_2(g) + 6H_2O(g) + 1531 \text{ kJ}$ State whether the concentrations the reactants would *increase*, *decrease*, or *remain constant* after nitrogen gas was removed from the system.

- 9. Identify the conjugate acid-base pairs in the reaction $HSO_4^- + HF \rightleftharpoons H_2SO_4 + F^-$ One conjugate acid-base pair is _____; the other acid-base pair is
- 10. Write the formula for the conjugate base of H_3PO_4
- 11. Write the formula for the conjugate acid of $H_2PO_4^-$.
- 12. Calculate the pH of a solution containing 0.20 g of NaOH in 2,000. mL of solution.

- 13. If the pH of liquid bleach is 12.0, what is the hydroxide ion concentration in this solution?
- 14. HCN is classified as a weak acid in water. What does this classification mean?
- 15. When 2.0×10^{-2} mole of nicotinic acid (a monoprotic acid) is dissolved in 350. mL of water, the pH is 3.05. What is the K_a of nicotinic acid?
- 16. The pH of a 0.6 M solution of a weak acid is 4.0. What percent of the acid has ionized?

- 17. Calculate the pH of a 0.025 M solution of NaNO₂ ($K_a(HNO_2) = 4.5 \times 10^{-4}$)
- 18. Calculate the pH of a 0.20 M solution of the weak base pyridine (C₅H₅N; $K_b = 1.7 \times 10^{-9}$)
- 19. Calculate the pH of a 0.15 M solution of HOI ($K_a = 2.3 \times 10^{-11}$)
- 20. Calculate the pH of a solution that is 0.15 M CH₃COOH and 0.75 M CH₃COONa. You will need the Ka of acetic acid.

21. Calculate the pH of a solution that is 0.20M NH₃(aq) and 0.35 M NH₄Cl(aq). $(K_b(NH_3) = 1.8 \times 10^{-5})$

22. 500. mL of a solution containing 1.5 M NH₃(aq) is mixed with 500. mL of a solution containing 0.50M of HCl(aq). What is the pH of the final solution? $(K_b(NH_3) = 1.8 \times 10^{-5})$

- 23. Calculate the percent ionization of formic acid in a 0.010 M HCOOH solution. $(K_a = 1.7 \times 10^{-4})$
- 24. What molar ratio of benzoate ion to benzoic acid would be required to prepare a buffer with a pH of 5.20? $[K_a(C_6H_5COOH) = 6.5 \times 10^{-5}]$

- 25. Write a net ionic equation for the reaction that occurs when a small amount of hydrochloric acid is added to a buffer solution containing NH₄Cl and NH₃.
- 26. Write a net ionic equation for the reaction occurring when a small amount of sodium hydroxide solution is added to a buffer solution containing NH₄Cl and NH₃.

27. 550. mL of a 0.40M solution of NaOH is titrated with 0.25 M HCl. Calculate the pH of the solution after 1.10 L of HCl has been added.

28. Calculate the pH at the equivalence point for the titration of 0.22 M HCN with 0.22 M NaOH. ($K_a = 4.9 \times 10^{-10}$ for HCN)

Answer Key

- 1. products
- 2. [NH₃] will increase.
- 3. The amount of NH_3 produced will decrease.
- 4. Addition of a catalyst will have no effect on the position of the equilibrium.
- 5. exothermic
- 6. 11
- 7. $K_c = 17.3$
- 8. decrease
- 9. $HF-F^-$; $H_2SO_4-HSO_4^-$
- $10. \ H_2 PO_4^-$
- 11. H₃PO₄
- 12. 11.40
- 13. $1 \times 10^{-2} \text{ M}$
- 14. A relatively small fraction of the acid undergoes ionization.
- 15. 1.4×10^{-5}
- 16. 0.02 %
- 17. 7.87
- 18. 9.27
- 19. 5.73
- 20. 5.44
- 21. 9.01
- 22. 9.56
- 23. 13%
- 24. 10.3
- 25. $H^+ + NH_3 \rightarrow NH_4^+$
- 26. $OH^- + NH_4^+ \rightarrow NH_3 + H_2O$
- $27.\ 1.48$
- $28.\ 11.18$